Method and Apparatus for Removing Orbital Space Debris from Near Earth Orbit Using the
Solar Wind: Platform for Redirecting and Removing Inert Space Material (PRRISM)
John F Dargin III
Ironstar Engineering, LLC, 56 Depot Street #2221, Duxbury, Massachusetts 02331 USA,
ian@ironstarengineering.com
ABSTRACT
A Platform for Redirecting and Removing Inert Space Material (PRRISM) is a system utilizing an antenna generating
an electromagnetic (EM) wave to interact with a solar EM wave to streamline magnetic flux in the Polar Cusp and to
facilitate the flow of solar plasma through the Polar Cusp, resulting in an increased density, velocity, and pressure at
the exit of the Polar Cusp. The elevated plasma flow intercepts and removes small space debris from Low Earth Orbit
(LEO), Geosynchronous Earth Orbit (GEO) and Geosynchronous Transfer Orbits (GTO) transiting the LEO altitude
regimes. Patent: US 10,501,212 B2, Dated: December 10, 2019
1 INTRODUCTION
There have been numerous articles and technical papers on the dangers of operating in Low Earth Orbit (LEO) at
altitudes between 160 km and 2000 km (0.03 – 0.3 R_E) with the threat of collision with countless small and large
orbital debris. This debris occupies LEO and extends out to Geostationary Earth Orbit or Geosynchronous Earth Orbit
(GEO) at a circular orbit of 35,786 km (5.6 R_E) above the Earth's equator. There are various inclinations and altitudes
defining operational satellite orbits in proximity with a multitude of space debris. This space junk is comprised of
derelict satellites, rocket bodies, and metal fragments from explosions or collisions. There are many other numerous
small detectable or in many cases undetectable particles such as nuts, bolts, paint chips, gloves, etc. Tracking of the
space debris is currently managed by the Air Force Joint Space Operations Center (JSpOC). The JSpOC monitors
space debris greater than 10 cm in diameter and is currently tracking more than 8,500 objects. Estimates on the amount
of debris less than 10 cm, range from 500,000 and up.

29 2 STUDIES

31	Space debris de-orbits over time due to increased drag forces as the orbital velocity of the debris slowly decays with
32	increasing contact with the Earth's upper atmosphere. This takes many months or years and studies have shown that
33	natural decay will not keep pace with the growing amount of space debris. In fact, we may be reaching a point where
34	additional debris will result in a cascading effect of collisions generating more debris. There are numerous examples of
35	high-speed collisions in low Earth orbit between satellites and with the space shuttle. A study initiated via a United
36	Nations Inter-Agency Space Debris Coordination Committee (IADC) Action Item 27.1, Stability of the Future LEO
37	Environment, was conducted by six IADC member agencies to investigate the projected growth of the LEO debris
38	population. Each concluded independently that active satellite management and debris removal, including the 25-year
39	rule, is necessary to prevent collisions in the future. [1]
40	
41	2.1 Kessler Syndrome
42	
43	The Kessler Syndrome [2] which helps to explain these phenomena is defined as the numerical growth of satellites and
44	other space objects in orbit to a point where a collision with space debris will generate more debris particles which will
45	then result in more collisions and so on until near Earth orbit becomes unusable. Except for PRRISM, the orbital space
46	debris removal techniques to date have involved the use of a Satellite for delivery of a device or material and are
47	required to operate in the same orbits as the debris. Some of these concepts include a collecting device or net for small
48	debris, a tether or grappling device for larger objects, a laser beam targeting system, a dust injection system, or
49	atmospheric gas injection system. Many involve high mass and energy systems that would contribute to the existing
50	debris and become part of the problem.
51	
52	
53	
54	
55	
56	

- 57 3 ORBITS
- 58

59 The Low Earth Orbit (LEO) is defined as an altitude less than 2000 km with the most concentrated altitudes ranging 60 from 450km to 1000km [3]. Within the LEO altitude range are many satellites having inclinations crossing near the 61 poles between 80° and 110° . Within a tighter band, are the more concentrated satellites in a Sun Synchronous Orbit 62 (SSO) with inclinations between 96.5° and 102.5° [4,5]. A SSO (also called a helio-synchronous orbit), as defined by 63 Wikipedia, is a geocentric orbit that combines altitude and inclination in such a way that the satellite passes over any 64 given point of the planet's surface at the same local solar time. Other satellites operate at various inclinations from 65 equatorial to polar to retrograde (inclination angle is greater than 90°) and range from circular (eccentricity = 0) to 66 highly elliptical (eccentricity greater than zero and less than one). Debris fields in elliptical orbits would have a Perigee 67 altitude within the LEO altitude range and Apogee well above LEO. There are currently over 20,000 satellites 68 operating between LEO and Geosynchronous Earth Orbit (GEO) with inclinations ranging from equatorial or 0° to 69 polar at 90° and up to 110°. The GEO is defined as an altitude range between 32,000 km and 37,000 km and a near 70 circular orbit. On a larger scale, distances can be given as a multiple of the Mean Earth Radius (R_E), where $1 R_E = 6380$ 71 km. Figure 1 presents a sketch of various near-Earth locations measured in R_E to show relative distance in the near-72 Earth environment.

Fig. 1 Mean Earth Radius

76 77

74

- 78
- 79

- 80 4 SOLAR WIND
- 81

82 Scientific studies of the solar plasma emanating from the sun have shown that the flow spirals outward from the sun in 83 a flow pattern illustrated in Fig. 2, which is often referred to as the "Parker Spiral," at two distinct speeds and with an 84 electrical charge distributed in a toroidal wave that reaches the Earth with a balanced electrical charge. The 85 solar plasma is composed of 96% protons, 4% He+ ions, minor constituents plus an adequate number of electrons for a 86 balanced charge [6]. Within the solar wind is contained the solar plasma of electrically charged particles (E field) and 87 the interplanetary magnetic field (IMF) or B field, which are mutually perpendicular and perpendicular to the direction 88 of flow. However, the solar wind and the solar plasma terms may be used interchangeably throughout this Paper. 89 Alfvén waves (a type of magnetohydrodynamic wave) embedded within the high-speed solar plasma have a wide range 90 of periods/frequencies. Only those with periods longer than 8 minutes can affect the oral regions of the Earth (where 91 the Aurora Borealis is generated) [7]. The slow solar wind speed has been recorded at 350 km/s originating from the 92 Sun's equatorial region, while the high-speed wind has been estimated at 800 km/s and emanating from the solar polar 93 regions at latitudes above 30°. These plasma dense current sheets have been recorded with stronger polar magnetic 94 fields and redistributed as the solar wind flows outward, reportedly achieving a near uniform magnetic field 95 distribution by about five solar radii. Solar cycles with Coronal Mass Ejection (CME) activity will likely affect solar 96 wind speed, magnetic field, and electrical charge. CME can be defined as a giant cloud of solar plasma drenched with 97 magnetic field lines that are blown away from the Sun during strong, long-duration solar flares and filament eruptions. 98

99

100

102

Fig. 2 Parker Spiral

104

105 5 ELECTROMAGNETIC WAVES

106

107 We also know from Maxwell's equations that a changing electrical field produces a magnetic field and a changing 108 magnetic field produces an electrical field. Further, accelerating electric charges generate electromagnetic waves. Data 109 from the Hawkeye science mission were recorded during polar cusp crossings of between 5 to $10 R_E$ at the northern 110 cusp and between 1.1 and 2.0 R_E for the southern cusp. The ULF-ELF magnetic field noise from about 1.78 to 178 111 kHz is the primary plasma wave phenomena and a reliable indication of the polar cusp [8]. Contained within the solar 112 wind are both electrical and magnetic fields. The changing electrical field along with the changing magnetic field 113 contributes to the strong electromagnetic wave moving outward from the Sun at the two distinct speeds of 350 km/sec 114 and 800 km/sec. As this EM wave approaches the Earth's geomagnetic field, a strong reconnection process occurs that 115 disturbs the flow and reduces energy levels within the polar cusp. Hawkeye measurements of the electric field within 116 the polar cusp revealed values of 1 to 5 mV per meter. In contrast, an electric field measurement of the free stream 117 solar wind upstream of Earth is 1×10^3 V per meter. The following pages will show that a measured force with 118 constructive interference is required to resonate with the electromagnetic field in the polar cusp to reduce turbulence, 119 allowing an increase in the force producing laminar flow to intercept with the targeted debris. A means of frequency 120 matching and pulsing of the EM wave with a parabolic antenna to achieve laminar flow through the Polar Cusp is 121 necessary to improve the flow rate and ultimately the force output from the polar Cusp. Using the source-free 122 Maxwell's equations [9].

123

124

125

126

 $\nabla_{\mathbf{x} \mathbf{E}} = -\partial \mathbf{B} / \partial \mathbf{t}$ for a changing magnetic field

$\nabla_{\mathbf{x}} \mathbf{H} = \partial \mathbf{D} / \partial \mathbf{t}$ for a changing electrical field Eq. 2

Eq. 1

127

128 where E and H are the electric and magnetic field intensities, measured in units of volts/m and amperes/m,

129 respectively; D and B are the electric and magnetic flux densities and are in units of coulomb/ m^2 and weber/ m^2

- 130 respectively.
- 131

132	The force on a charge q moving with velocity v in the presence of an electric field E and a magnetic field B is called
133	the Lorentz force and is given by:
134	$\mathbf{F} = \mathbf{q} \ (\mathbf{E} + \mathbf{v} \ \mathbf{x} \ \mathbf{B}) $ Eq. 3
135	
136	For an electromagnetic wave moving through a vacuum, the constitutive relation of the electric and magnetic flux
137	densities D, B are related to the field intensities E, H in the simplest form:
138	
139	$D = \varepsilon_0 E$ and $B = \mu_0 H$ Eqs. 4 and 5
140	
141	where ε_0 and μ_0 are the permittivity and permeability of vacuum with numerical values:
142	$\epsilon_o = 8.854 \text{ x } 10^{-12} \text{ farad/ m}$
143	$\mu_{o} = 4 \pi x \ 10^{-7} \text{ henry/ m}$
144	
145	
146	
147	5.1 EM Waves
148	
149	Accordingly, the net force on a moving charge exerted by a time-varying electromagnetic (EM) field is proportional to
150	the magnitude and polarity of the charge, the velocity of the charge, the magnitude, direction and polarization of the
151	EM field, and the frequency of the EM field. These principles are used to focus and accelerate charged particles in
152	particle accelerators such as linear accelerators and cyclotrons. The EM field parameters required to manipulate a
153	specific charge (a solar plasma ion or electron) can be determined by closed form calculation, multi-physics finite
154	element modeling, or by experimentation. While charged plasma particles might have a bearing on eliminating
155	turbulence within the polar cusp, it is also noted that the interplanetary magnetic field (IMF) fluctuations are more
156	important than the variations in the solar wind speed for transferring energy into the polar cusp [7]. In another paper,
157	the solar wind is described as "magnetic spaghetti" where the magnetic flux tubes are surrounded by electrically
158	charged sheets of solar plasma with thicknesses of 1000 to 2000 km [10]. These magnetic flux tubes can be from 35

 R_E up to and greater than 100 R_E in diameter and are oriented with the Parker spiral at about a 45° angle to the Sun -

- 160 Earth line. Furthermore, it can take about 20 minutes for one magnetic flux tube to interact with the Earth's
- 161 geomagnetic field before a 2nd flux tube arrives with possibly a different set of electromagnetic parameters.
- 162

163 6 FREESTREAM SOLAR WIND CALCULATIONS

164

Now we calculate the unimpeded free-stream solar wind mass flow, dynamic pressure, and force to determine the pressure force that could be available to provide sufficient force to remove space debris from low Earth orbit. First, looking at the solar wind mass flow, we take the cross-sectional area of the IMF as in Fig. 3. Using 10 km as the thickness per Wikipedia and then taking the width as $2 \times 10 R_E$, with $1R_E = 6380$ km we have the Area as:

184	M = 6.76 x 10-3 kg/sec
185	
186	The Dynamic Press (P) = $m_p * n_p * v_p^2$ Eq. 8
187	
188	$P = 1.673 \text{ x } 10^{-27} \text{ kg } * 9 \text{ x } 10^6 \text{/ } \text{m}^3 * 1.225 \text{ x } 10^{11} \text{ m}^2 \text{/ sec}^2$
189	P = 1.84 nPa
190	
191	
192	
193	The Free-stream Solar Wind Force (F) = Dynamic Pressure (P) * Area (A) Eq. 9
194	
195	F = 2360 Newtons
196	
197	7 POLAR CUSP CHARACTERISTICS
198	
199	As the solar wind approaches the Polar Cusps, observations from the IMP - 8 and Hawkeye satellites have shown that
200	there are two significant areas defining the Polar Cusp: the external Polar Cusp area and the internal Polar Cusp area.
201	Figure 4 illustrates the exterior and interior areas of the Polar Cusp with respect to the magnetosheath and the
202	magnetopause. The Earth's rotation is counterclockwise so that the dawn to dusk flow would be out of the paper and
203	the dusk to dawn flow would be into the paper. In the vicinity of the exterior of the Polar Cusp, the solar wind,
204	flowing with both the charged particles of the solar plasma and the interplanetary magnetic field (IMF), interact with
205	the Earth's geomagnetic field and begin a complex reconnection process with significant turbulence [11].
206	

- Fig. 4 Polar Cusp Environment
- 210 7.1 Hawkeye Data
- 211

208

209

212 Hawkeye plasma, magnetic field, and plasma wave instruments have directly sampled the throat of the northern Polar 213 Cusp. The interplanetary magnetic field was observed to change from Southward to Northward on July 3, 1974. There 214 were 2 distinct regions identified based on magnetic field plasma flow and magnetic and electric noise. Based on the 215 data, the dominant factor determining the initial location of reconnection and evolution of the reconnected flux is the 216 orientation of the IMF. The IMF orientation (Southward or Northward) at the magnetopause is more important than 217 variations in solar wind speed for setting the initial location for flux tube reconnection [11]. It is important to note that 218 as the density in the Polar Cusp increases, the greater the force will be on the space debris. In addition, the solar wind 219 Alfvén waves within the Parker spiral affect the magnetospheric dayside cusp density and heat the cusp [7]. The 220 proton density in the solar plasma is unchanged at 9 per cubic centimeter until below 4 R_E when the density increases 221 deeper into the cusp [11]. Furthermore, the energetic population within the Cusp is composed of both ionospheric (O^+) ions, and solar wind (He⁺⁺, O >+3). The presence of ionospheric ions higher in the Polar Cusp with some vertical flow 222 223 indicates the presence of a turbulent region within the Polar Cusp. It was observed that the flow in the exterior and 224 interior Polar Cusp is turbulent. In the exterior cusp, the mean flow velocity is 300 km/s dawnward (Earth's rotation is 225 counterclockwise as indicated in Fig. 4), whereas, the Magnetosheath flow is 200 km/s Northward. In the interior 226 cusp, the solar plasma is 250-300 km/s dusk to dawn with slight direction changes from poleward to the equator and 227 the geomagnetic field is weak. Hence, the data shows that within the exterior cusp, the magnetic field components 228 change from those in the Magnetosheath and become more variable. Once entering the Cusp, the bulk flow becomes 229 disturbed from the steadier flow in the Magnetosheath.

230 **7.2 Polar Cusp Exit Calculations**

- 231
- 232 The calculation for the normal solar wind flow exiting the Polar Cusps requires estimates for calculating the Mass flow
- 233 (M), Dynamic Pressure (P) and Solar Wind Force (F) that could be applied against the targeted debris in Low Earth
- Orbit. As shown in Fig. 5, "In the Ionosphere the cusp is several hours wide and several degrees in depth" [12,13], the
- exit area of the Cusp would be represented by length (L) of 2° of north latitude from 79° to 81°. The width (W) would
- 236 be 2/24 hours on the circumference at 80° north latitude. Therefore:
- 237

238

239

241		
242	Area = L * W	Eq. 10
243		
244	$L = \Delta \ 2^\circ$ at 80° N Latitude (79°-81°) where $R_E = 6380$ km,	
245	= Cir * (2°/ 360°)	
246	$= 2 \Pi R_{\rm E} * 10^6 {\rm m} * (2^{\circ}/360^{\circ})$	
247	$L = 0.223 \text{ x } 10^6 \text{ m}$	
248	W = $2/24$ hours at 80° North Latitude	
249	$= (2/24) * 2 \Pi R_E \cos 80^{\circ}$	
250	$W = 0.580 \text{ x } 10^6 \text{ m}$	
251	Area = $0.223 \times 10^6 \text{ m} * 0.580 \times 10^6 \text{ m}$	
252	Area of the Cusp exit (A) = $0.129 \times 10^{12} \text{ m}^2$	
253		

254 The Mass flow (M) is calculated with the following values: 255 $M = \rho^* A * v$ 256 Eq. 11 257 258 Where $\rho = m_p * n_p$ $m_p = 1.673 \text{ x } 10^{-27} \text{ kg}$; mass of a proton 259 260 $n_p = 15 \text{ cm}^{-3}$; number concentration of protons 261 Area = $0.129 \times 10^{12} \text{ m}^2$ 262 Velocity (v) = 100 km/sec $M_{cusp} = 1.673 \text{ x } 10^{-27} \text{ kg} * 15 \text{ cm}^{-3} * 0.129 \text{ x } 10^{12} \text{ m}^2 * 100 \text{ km/ sec}$ 263 $M = 0.324 \text{ x } 10^{-3} \text{ kg/sec}$ 264 The Mass flow at the Cusp Exit is: 265 The Dynamic Pressure (P) through the Polar Cusp: 266 $P = m_p * n_p * v_p^2$ 267 Eq. 12 268 269 where $m_p = 1.673 \times 10^{-27}$ $n_p = 15 \text{ cm}^{-3}$ 270 271 $v_p = 100 \text{ km/sec}$ 272 $P = 1.673 \text{ x } 10^{-27} \text{ kg} * 15 \text{ cm}^{-3} * (100 \text{ km/sec})^2$ 273 $P = 0.251 \text{ x } 10^{-9} \text{ kg/m-sec}^2$ 274 The Dynamic Pressure (P) at the Cusp Exit is: P = 0.251 nPa 275 276 The Estimated Normal Solar Wind Force (F) at the Cusp exit is: 277 278 F = Dynamic Pressure (P) * Area of the Cusp Exit (A)Eq. 13 279 $P = 0.251 \text{ x } 10^{-9} \text{ kg/m-sec}^2$ 280 $A = 0.129 \text{ x } 10^{12} \text{ m}^2$ 281 $F = (0.251 \text{ x } 10^{-9} \text{ kg/m-sec}^2) * (0.129 \text{ x } 10^{12} \text{ m}^2)$ 282

283	$= 0.0324 \text{ x } 10^3 \text{ kg} - \text{m/sec}^2$
284	The Estimated Normal Solar Wind Force (F) at the Cusp exit is:
285	F = 32.4 Newtons
286	
287	7.3 Polar Cusp and EM Wave Effect
288	
289	While the North and South poles offer a natural magnetic attraction for the solar wind and the highly charged plasma
290	particles, the solar wind offers a readily available medium to help sweep away the small debris particles in Low Earth
291	Orbit. As illustrated in Fig. 6, PRRISM would use an electromagnetic wave generated by an antenna mounted on a
292	dedicated satellite and placed in a 10R _E elliptical orbit above and near the intercept at the Polar Cusps, or at some other
293	optimum location. The PRRISM satellite, would aim electromagnetic waves into the Polar Cusp to reduce turbulence,
294	increase the density, redirect and streamline the particle flow within the cusp and increase the temperature and density
295	so that a greater pressure force could be directed onto the space debris. The charged particles present in the high
296	velocity flow of the solar wind are naturally redirected through the Polar Cusp with an antenna-focused
297	electromagnetic wave. Using the electromagnetic wave, the naturally diverted solar wind flow could be strengthened
298	by improving the laminar flow, reducing turbulence, and increasing the density by heating the plasma through the Polar
299	Cusp. This highly charged flow of solar wind could be harnessed and regulated to induce a discrete pressure wave burst
300	of plasma at a specific time and duration (per a computer-generated target solution) when the debris cloud is passing
301	below the Polar Cusps near the North or South pole.
302	

Fig. 6. Northern Polar Cusp

307 8 INTERCEPT CALCULATION

308

Fig. 7 2-D Intercept calculation

325

323

324

326 For the intercept to occur, the time t_1 for the diverted plasma flow must equal the time t_2 for the space debris.

327	This results in the formula:	$d_1 / v_1 = d_2 / v_2.$
328		Using $d_1 = 9.8 R_E$

329 $v_1 = 350$ km/s for the solar plasma and

330	$t_1 = t_2$ With $R_E = 6380$ km and solving for t_1
331	Yields $t_1 = 178.6 \text{ sec}$
332	This is just under 3 minutes to the intercept location and contact with the debris. At this point the debris velocity
333	would decrease, causing the debris to move into a lower and decaying orbit by using the higher-pressure force of the
334	diverted and more laminar solar plasma flow. Variations of this diverted solar plasma flow would be to use a
335	larger/stronger EM wave or multiple PRRISM satellites. The process would be repeated as each debris cloud passes
336	into the target area and the plasma flow would be redirected with a sufficient mass flow to intercept and remove the
337	debris into a deteriorating orbit to burn up harmlessly in the Earth's atmosphere.
338	
339	9 DEBRIS CALCULATIONS
340	
341	Several calculations were made to determine the force required to cause a piece of space debris in a 500km orbit to de-
342	orbit. First, the mass of a small piece of space debris is calculated. D. Kessler [2] determined that the average mass
343	density (ρ) for debris objects 1 cm in diameter and smaller is 2.8 g/cm ³ . For debris larger than 1 cm:
344	
345	$\rho = 2.8 \ d^{-0.74}$ Eq. 15
346	
347	For a diameter (d) of 2 cm, which is the smallest detectable size, the mass density is:
348	$\rho = 2.8 * (2)^{-0.74}$
349	$= 1.68 \text{ g/cm}^3$
350	
351	The mass of a 2-cm piece of space debris: $m = \rho * 4/3 * \pi * r^3$ Eq. 16
352	
353	m = 7 g
354	
355	The force necessary to keep a small mass of space debris in a 500-km orbit is shown by this relationship:
356	
357	Force _{Space Debris} = G ($M_E * m_{SD}$)/ r_{SD}^2 Eq. 17
358	

359	where: $G = Gravitational constant = 6.67 \times 10^{-11} N \cdot m^2 / kg^2$
360	$M_E = Mass of Earth = 5.98 \times 10^{24} \text{ kg}$
361	$m_{SD} = mass of space debris = 7 x 10^{-3} kg$
362	r_{SD} = radial distance to the debris orbit = 6380 km + 500 km = 6880 km
363	Force $_{\text{Space Debris}} = 6.67 \text{ x } 10^{-11} \text{N} \cdot \text{m}^2 / \text{kg}^2 * (5.98 \text{ x } 10^{-4} \text{ kg} * 7 \text{ x } 10^{-3} \text{ kg}) / (6.88 \text{ x } 10^6 \text{ m})^2$
364	Force $_{\text{Space Debris}} = 0.059$ Newtons
365	
366	Force to remove 2 cm debris > 0.059 Newtons
367	

368 Hence, a force greater than 0.059 Newtons would remove a piece of Space debris 2-cm in diameter from a 500-km 369 orbit. For an orbit of 1000 km, the force is slightly less at 0.051 Newtons. A mass that represents a 2-cm diameter 370 piece of debris was used based on Dr. Kessler's equation which was developed from numerous catalogued debris of 371 different sizes and materials [2]. As can be seen from earlier calculations, the estimated pressure force of the normal 372 solar wind flow of 32.4 Newtons was calculated through the Polar Cusp and would be sufficient, if unimpeded, to 373 remove this and other small pieces of debris. However, space science data has shown that the turbulence in the Polar 374 Cusp reduces the downward flow of the solar plasma in such a way that this pressure force is never achieved. By 375 creating a laminar flow in the Polar Cusp, a pressure force greater than 32.4 Newtons can be obtained.

376

377 10 PRRISM OPERATION

378

379 Previous solar science missions were placed in many different orbits with slightly different objectives but using a 380 variety of science instruments with some overlap in objectives and methodology. The WIND Satellite operated in a halo orbit about the L1 Lagrange point at 256 R_{E;} the Hawkeye Satellite was in an elliptical orbit with an apogee of 381 382 $21R_{E}$, passing through the northern cusp at 5 to 10 R_E; and the Polar Satellite was in an elliptical polar orbit of 9.5 R_E x 383 1.8 RE. The PRRISM satellite, located in a 10 RE elliptical orbit above the Polar Cusp and outside the target orbits, 384 would receive telemetry data from the Solar Plasma Sensor (SPS), either on board or remotely located upstream of the 385 Polar Cusp and from the Space Debris Sensor (SDS), also on board or remotely located. A variety of instruments have 386 been used on earlier space science missions and can be modified as necessary to meet mission requirements for the

387 Solar Plasma Sensor as well as the Space Debris Sensor. The Targeting Computer (TC) on board the PRRISM Satellite 388 would receive the telemetry data from the SPS regarding the plasma polarity, plasma electrical charge, plasma 389 magnetic field strength, electron density, ion density, proton density, flux density, frequency and velocity of the solar 390 plasma. The SDS would send telemetry data to the TC with debris data such as density, size, velocity, and orbit 391 parameters of the debris cloud passing beneath the Polar Cusps. The TC would then determine the required orientation 392 of the PRRISM antenna, the magnitude, frequency, and polarization of the electromagnetic wave, along with the timing 393 and power-up sequencing of the PRRISM antenna. This electromagnetic wave antenna would then aim a narrow beam 394 into the Polar Cusp to decrease turbulence and increase the laminar flow of the plasma through the Polar Cusp while 395 increasing the temperature and proton density within the plasma. The TC would also provide intercept coordinates and 396 duration for the electromagnetic directed pressure wave of solar plasma to intercept and move the debris cloud into a 397 decaying orbit. The result would be to redirect the debris into the atmosphere to burn up along with other charged 398 plasma creating the familiar light show known as the northern and southern lights. The timing and sequencing of the 399 electromagnetic (EM) wave could be pulsed or varied depending on the pressure force required.

400

401 10.1 PRRISM SYSTEMS

402

403 The primary PRRISM satellite systems are the following: The Satellite Telemetry, Tracking & Control Subsystem 404 (TTCS) provides the capability to command and operate the Satellite and to receive, record and transmit science and 405 engineering telemetry data. This unit can execute commands in real time or storing them for delayed execution. The 406 Satellite Electrical Power Distribution Subsystem (EPDS) provides for the generation, storage, distribution, and control 407 of power required for operating the Satellite and instruments. While sunlit, power is normally supplied by the solar 408 arrays. The Batteries supply power while in the Earth's shadow, or during specific functions requiring the PRRISM to 409 be pointed away from the sun. The Satellite Attitude Control & Propulsion Subsystem (ACPS) contains the hydrazine 410 thrusters to process the satellite spin axis and control its spin rate. Small orbital maneuvers are also made by these 411 thrusters. The ACPS would orient the PRRISM antenna to focus the EM wave at the entrance of the Polar Cusp to 412 redirect the solar wind for the duration of the targeting sequence. The Satellite Thermal Control Subsystem (TCS) 413 provides an acceptable thermal environment for the Satellite subsystems and instruments primarily by using passive 414 thermal control with thermal finishes and blanketing. The Satellite Attitude Determination Subsystem (ADS) is used to 415 determine the Satellite attitude and spin rate. This allows subsystems to keep within nominal environments and provide 416 a reference frame for the mission. The ADS is designed to provide knowledge of the Satellite spin axis in inertial 417 space. The PRRISM satellite would not be adding any propulsive force to the solar plasma. However, during an actual 418 targeting sequence, the EM wave would increase the laminar flow and increase proton density to increase the pressure 419 force of the solar plasma on the targeted space debris. The intercept sequence would begin with a command from 420 ground control for the Targeting Computer to access the Solar Plasma Sensor data. The Satellite Attitude 421 Determination Subsystem would orient the PRRISM to concentrate the EM wave on the solar plasma and maintain the 422 proper frame of reference for the duration of the targeting sequence. Specific to the PRRISM satellite system are the 423 Targeting Computer (TC), The Antenna EM wave Electrical Power Control Unit and the Magnetic field control unit. 424 These subsystems would interact with each other using telemetry data from the Solar Plasma Sensor; the Space Debris 425 Sensor; and the Ground Station to position the PRRISM antenna for a predetermined period. This would provide the 426 PRRISM antenna with sufficient power to produce an electromagnetic wave to redirect the solar plasma into the 427 Northern or Southern Polar Cusp with an increase in laminar flow and pressure force.

428

429 10.2 PRRISM ENVIRONMENT

430

431 PRRISM is a novel use of space-based assets with minimal effect on the Earth's magnetosphere and, in the near-Earth 432 orbital environment it will speed up orbital decay of debris objects. PRRISM combines the scientific research of the 433 Sun – Earth electromagnetic environment and applies proven engineering principles. PRRISM operates from an 434 elliptical orbit outside of the Polar Cusp using a controlled, focused and measured electromagnetic wave to direct a 435 narrow beam or pulse into the Polar Cusp to align the turbulent solar plasma, increase the density and match the 436 frequency and polarity of the incoming solar wind. There are limitations to reaching the low inclination orbits which 437 will have to be overcome. However, the most populated orbit is the Sun Synchronous Orbit (SSO) where satellites 438 occupying Low Earth Orbits are crossing the poles with inclinations between 80 degrees and 110 degrees. As 439 previously discussed, the small debris in Earth orbit that is not tracked and traveling at roughly 9 km/s can be more 440 lethal to satellites and humans than a larger piece that is trackable. Damage from debris is a low probability now but is 441 a high consequence event. We depend on satellites for our communications, including TV and cell phone coverage, 442 navigation, weather, disaster management, and military reconnaissance. Because PRRISM is targeting the smaller 443 debris pieces (and from outside of the debris orbit), a proportionally small increase in dynamic pressure and force will 444 be needed to remove this debris from orbit. By creating a constructive interference with the solar wind, a temporary but 445 stronger dynamic pressure could be attained at the exit of the Polar cusp. The concept relies on fine-tuning the 446 frequency and polarity of the solar plasma in the Polar Cusp with an externally applied electromagnetic wave to 447 incrementally increase the dynamic pressure by a small amount and create a timed 3-D intercept with the debris cloud 448 effecting the removal and deorbit of the targeted space debris in large quantities. Many larger satellites including 449 Skylab have been safely and successfully deorbited. However, unlike larger satellites that do not completely burn up 450 on re-entry, the smaller pieces of debris will be destroyed during re-entry into the atmosphere. For example, using the 451 gravimetric force equation for debris diameters between 2 cm and 200 cm, listed in Table 8, it can be shown that in a 452 500 km orbit, the gravitational force required to maintain orbit is small for debris diameters less than 100 cm and 453 therefore a minimum additional opposing force would be needed to slow the debris orbital speed and cause it to decay 454 and deorbit.

455

Orbital Debris Diameter (Cm)	Gravitational Force in 500 Km orbit (Newtons)
2	0.1
10	2.2
25	17.8
50	85.4
75	213.5
100	409.1
150	1022.8
200	1959.5

456

457

458 The gravimetric force increases with the size of the debris, and to maintain a 500 km orbit for debris less than 100 cm 459 (213.5 Newtons for a 75cm diameter debris) the force is less than the highest estimated Polar Cusp exit force (396.6 460 Newtons) under normal conditions (Table 9). Furthermore, a smaller opposing force could be effective in deorbiting 461 larger debris pieces. The Polar Cusp exit force is partly determined by the exit area. Using the area based on 462 observations by Maynard [12], the estimated exit area of the Polar cusp is calculated at 0.129×10^{12} m² and is variable. 463 This is approximately the equivalent of the combined areas of the states of Maine, New Hampshire, and Vermont. The 464 other variable in the dynamic pressure equation is the velocity. Data from Hawkeye and IMP 8 missions [11] have 465 shown that the velocity varies between the external cusp and the internal cusp while the density increases at altitudes 466 below 4 R_E. In the earlier calculations, a conservative value of 100 km/sec was used to calculate the dynamic pressure 467 and the Polar cusp exit force. However, the solar plasma velocity and direction measured in the polar cusp during

Table 8. Gravimetric Force

468 science missions has a wider range from 100 to 350 km/s while moving in all directions. Table 9 shows the exit force

469 from the polar cusp under normal conditions for these plasma velocities without any external forces applied.

470

Plasma Velocity (Km/ sec)	Polar Cusp Exit force (Newtons) with no external forces applied
100	32.4
200	129.5
300	291.4
350	396.6

471

Table 9. Plasma Velocities

472

473 At a velocity of 350 km/s the Polar cusp exit force is 396.6 Newtons. This is just slightly less than the force of 409.1

474 Newtons required for a 100 cm diameter debris piece to remain in a 500 km orbit. Variations in polar cusp solar wind

475 EM intensities, plasma velocity and plasma direction have been attributable to coronal mass injections (CME) and

476 other solar flare activity as well as the timing and direction of the interplanetary magnetic field (IMF) when arriving at

478 the Earth's geomagnetic field. Utilization of PRRISM to redirect and remove debris pieces less than 100 cm in 479 diameter would require little additional EM wave energy in excess of normal conditions. EM wave energy 480 supplementation would be needed during periods of low solar cycles/ energy levels and possibly for larger pieces of 481 debris. Because of inconsistencies in mission data, additional testing would be needed for a final determination of 482 required EM wave energy. In addition, orbital decay is achievable with a fractional decrease in gravimetric force. 483 Therefore, larger pieces of debris could conceivably be removed from orbit over time using a force less than the 484 minimum gravimetric force. As shown in Plot 10, the Gravitational force decreases with higher orbits and smaller 485 debris mass. Low Earth orbital distances are between 688000 meters ($1xR_E+500$ km altitude) and 838000 meters 486 $(1xR_E+2000 \text{ km altitude})$. The lighter debris particles (2 cm, 10 cm, and 25 cm) have extremely low values of 487 gravitational force throughout this orbital range. Because of the variety of space debris in both size and shape, multiple 488 solutions will be needed to resolve this growing threat to space operations. Solutions to remove large derelict satellites 489 are close to achieving success. However, these methods operate in the same orbit as the targeted debris and risk the 490 possibility of causing additional collisions that create more debris. Therefore, once the large pieces have been removed, 491 the PRRISM solution of operating outside of the debris orbit is a reasonable and safe approach to clearing the near-492 Earth orbits. Thus, allowing safe operation for space travelers and for our commercial and government driven 493 international satellite commerce.

Clearing orbital space for a cleaner future

www.ironstarengineering.com

498

499 11 REFERENCES

500

501	1.	United Nations. "Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space",
502		United Nations Office for Outer Space Affairs, Interagency Space Debris Coordination Committee (IADC),
503		resolution 62/217, Dec 22, 2007.

504

National Aeronautics and Space Administration. "Orbital Debris Environment for Spacecraft Designed to
Operate in Low Earth Orbit", NASA Technical Memorandum 100471.

507		
508	3.	Weeden, B. and Shortt, K. "Development of in Architecture of Sun-Synchronous Orbital Slots to Minimize
509		Conjunctions" in SpaceOps 2008 conference, Paper AIAA 2008-3547.
510		
511	4.	Boain, R.J. "A-B-Cs of Sun-Synchronous Orbit Mission Design" in 14th AAS/AIAA Space Flight Mechanics
512		conference, Maui, Hawaii, 2004, Paper AAS 04-108.
513		
514	5.	Oltrogge, D. and Kelso, T.S. "Getting to know our Space Population from the Public Catalog", Analytic
515		Graphics Incorporated (AGI), Center for Space Standards and Innovation, Paper AAS 11-416.
516		
517	6.	Schwenn, R. "Solar Wind: Global Properties", Encyclopedia of Astronomy and Astrophysics, Edited by Paul
518		Murdin, article id. 2301, Bristol: Institute of Physics Publishing, Nov 2000. Available:
519		http://eaa.iop.org/abstract/0333750888/2301
520		
521	7.	Korth, A., et al, "The response of the polar cusp to a high-speed solar wind stream studied by a multi-spacecraft
522		wavelet analysis", J. of Atmospheric and Solar-Terrestrial-physics, Vol 73, pp52-60, Elsevier Ltd, October 2011
523		
524	8.	Gurnett, D.A. and Frank, L.A., "Plasma Waves in the Polar Cusp: Observations from Hawkeye 1", Journal of
525		Geophysical Research, vol. 83, no. A4, pp. 1447-1462, Apr 1978
526		
527	9.	Orfanidis, S.J., Electromagnetic waves and Antennas. Rutgers University, Aug 2016
528 529	10.	Borofsky, J.E. "The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind
530		monitor at L1", J. of Atmospheric and Solar-Terrestrial Physics, Vol 177, pp 2-11, Elsevier Ltd, 2018
531		
532	11.	Chen, S.H., et al, "Exterior and interior polar cusps: Observations from Hawkeye", J. of Geophysical Research,
533		vol. 102, no. A6, pp 11,335-11,347, Jun 1, 1997, American Geophysical Union, Jun 1997
534		

- 535 12. Maynard, N.C., "Coupling the Solar-Wind/IMF to the Ionosphere Through the High Latitude Cusps", Surveys
- 536 in Geophysics, (2005) 26:255-280, Springer 2005
- 537
- 538 13. Peterson, W.K., et al, "Sources of plasma in the high altitude cusp", J. Of Atmospheric and Solar-Terrestrial
- 539 Physics, Vol 87-88, pp1-10, Elsevier Ltd, 2011